**A Non-heuristic Approach to Time-space Tradeoffs and Optimizations for BKW**

*Hanlin Liu and Yu Yu*

**Abstract: **Blum, Kalai and Wasserman (JACM 2003) gave the first sub-exponential algorithm to solve the Learning Parity with Noise (LPN) problem. In particular, consider the LPN problem with constant noise $\mu=(1-\gamma)/2$. The BKW solves it with space complexity $2^{\frac{(1+\epsilon)n}{\log n}}$ and time/sample complexity $2^{\frac{(1+\epsilon)n}{\log n}}\cdot 2^{O(n^{\frac{1}{1+\epsilon}})}$ for small constant $\epsilon\to 0^+$. We propose a variant of the BKW by tweaking Wagner's generalized birthday problem (Crypto 2002) and adapting the technique to a $c$-ary tree structure. In summary, our algorithm achieves the following:

(Time-space tradeoff). We obtain the same time-space tradeoffs for LPN and LWE as those given by Esser et al. (Crypto 2018), but without resorting to any heuristics. For any $2\leq c\in\mathbb{N}$, our algorithm solves the LPN problem with time/sample complexity $2^{\frac{\log c(1+\epsilon)n}{\log n}}\cdot 2^{O(n^{\frac{1}{1+\epsilon}})}$ and space complexity $2^{\frac{\log c(1+\epsilon)n}{(c-1)\log n}}$, where one can use Grover's quantum algorithm or Dinur et al.'s dissection technique (Crypto 2012) to further accelerate/optimize the time complexity.

(Time/sample optimization). A further adjusted variant of our algorithm solves the LPN problem with sample, time and space complexities all kept at $2^{\frac{(1+\epsilon)n}{\log n}}$ for $\epsilon\to 0^+$, saving factor $2^{\Omega(n^{\frac{1}{1+\epsilon}})}$ in time/sample compared to the original BKW, and the variant of Devadas et al. (TCC 2017). This benefits from a careful analysis of the error distribution among the correlated candidates, and therefore avoids repeating the same process $2^{\Omega(n^{\frac{1}{1+\epsilon}})}$ times on fresh new samples.

(Sample reduction) Our algorithm provides an alternative to Lyubashevsky's BKW variant (RANDOM 2005) for LPN with a restricted amount of samples. In particular, given $Q=n^{1+\epsilon}$ (resp., $Q=2^{n^{\epsilon}}$) samples, our algorithm saves a factor of $2^{\Omega(n)/(\log n)^{1-\kappa}}$ (resp., $2^{\Omega(n^{\kappa})}$) for constant $\kappa \to 1^-$ in running time while consuming roughly the same space, compared with Lyubashevsky's algorithm.

We seek to bridge the gaps between theoretical and heuristic LPN solvers, but take a different approach from Devadas et al. (TCC 2017). We exploit weak yet sufficient conditions (e.g., pairwise independence), and the analysis uses only elementary tools (e.g., Chebyshev's inequality).

**Category / Keywords: **foundations / Learning Parity with Noise, BKW

**Date: **received 6 Oct 2021, last revised 7 Oct 2021

**Contact author: **yuyuathk at gmail com, hans1024 at sjtu edu cn

**Available format(s): **PDF | BibTeX Citation

**Version: **20211007:124354 (All versions of this report)

**Short URL: **ia.cr/2021/1343

[ Cryptology ePrint archive ]